Питание усилителей нч. Импульсный блок питания унч. Параллельный или последовательный стабилизатор

Представляю вашему вниманию испытанную мной схему достаточно простого импульсного сетевого блока питания УМЗЧ. Мощность блока составляет около 200Вт(но можно разогнать и до 500Вт).

Краткие характеристики:

Входное напряжение — 220В;
Выходное напряжение — +-26В(при полной нагрузке просадка 2-4В);
Частота преобразования — 100кГц;
Максимальный ток нагрузки — 4А.

Схема блока
Блок питания построен на микросхеме IR2153 по схеме strannicmd



Конструкция и детали.

Блок питания собран на печатной плате из одностороннего стеклотекстолита. Рисунок печатной платы в Sprint-Layout под утюг найдете в конце статьи.
Входной дроссель из любого блока питания компьютера или монитора, входной конденсатор применен из расчета 1мкф на 1Вт.Далее плоский низкочастотный диодный мост GBUВ приблизительно на 3А в качестве ключей можно применить IRF 840, IRFI840GLC, IRFIBC30G, VT1 – BUT11, VT3 – c945, выходные диодные сборки лучше применить пошустрее в этой схеме я поставил Шотки MBR 1545, выходные дроссели сделаны из кусочков феррита длинной 4см и?3мм, 26 витков проводом ПЕВ-1, но я так думаю что можно применить и дроссель групповой стабилизации на кольце из распыленного железа(сам не пробовал).
Основную часть деталей можно найти в компьютерных БП.

Печатная плата

БП в сборе

Трансформатор

Трансформатор под свои нужды, можно рассчитать
Данный трансформатор намотан на одном кольце К32Х19Х16 из феррита марки М2000НМ (колечко синего цвета), первичная обмотка намотана равномерно по всему кольцу и составляет 34 витка провода МГТФ 0,7. Перед намоткой вторичных обмоток нужно обмотать первичную обмотку фторопластофой лентой. Обмотка II равномерно намотана сложенным вдвое проводом ПЭВ-1 0,7 и составляет 6+6 витков с отводом от середины. Обмотка III (самопитание IRки) равномерно намотана 3+3 витка витой парой (одна пара проводов) с отводом от средины.

Наладка БП

ВНИМАНИЕ!!! ПЕРВИЧНЫЕ ЦЕПИ БП НАХОДЯТСЯ ПОД СЕТЕВЫМ НАПРЯЖЕНИЕМ, ПОЭТОМУ НУЖНО СОБЛЮДАТЬ МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ НАЛАДКЕ И ЭКСПЛУАТАЦИИ.
Первый запуск блока желательно производить подключив его через токоограничивающий резистор в место предохранителя, представляющий из себя лампу накаливания мощностью 60Вт и напряжением 220В, а IR-ку питать от отдельного блока питания 12В(обмотка самопитания отключена). При включенном БП через лампу сильно не грузите его. Как правило, правильно собранный БП в наладке не нуждается. При первом включении через лампу БП лампа должна загорется и сразу же потухнуть (моргнуть), если же так то все нормально и можно проверить питание на выходе. Все ок! тогда отключаем лампу, ставим предохранитель и подключаем самопитание микросхемы, при запуске БП светодиод который стоит между первой и третей ногой должен моргнуть и блок питания запустится.

Проверили его работоспособность, оценили качество звука основного канала. Самое время добавить в него модуль защиты от случайных замыканий, чтоб вся работа не пошла лесом, из-за неизбежных случайностей в процессе его эксплуатации. Также соберём остальные маломощные каналы УНЧ, для подключения тыловых колоночек.

ЗАЩИТА АС УМЗЧ

Изначально задумал использовать схему защиты от БРИГ , но затем читая отзывы о симисторной защите захотел попробовать ее. Блоки защиты были сделаны в самом конце, тогда было туго с финансами, а симисторы и прочие компоненты схемы у нас оказались довольно дороги, поэтому вернулся к релейной защите. Напоминаю, что все схемы находятся обзора.

В итоге были собраны три блока защиты, один из них для сабвуферного усилителя, а два остальных для каналов ОМ.


В сети можно найти большое количество схем блоков защиты, но эта схема перепробована мной неоднократно. При наличии постоянного напряжения на выходе (выше допустимого) защита мгновенно срабатывает спасая динамическую головку. После подачи питания реле замыкается, а при срабатывания схемы оно должно размыкаться. Защита включает головку с небольшой задержкой - это тоже в свою очередь, является дополнительной страховкой и щелчок после включения, почти не слышен.


Компоненты блока защиты могут отклоняться от указанного, Основной транзистор можно заменить на наш КТ815Г , использовал высоковольтные транзисторы MJE13003 - их у меня навалом, кроме того, они довольно мощные и не перегреваются в ходе работы, поэтому в теплоотводе не нуждаются. Маломощные транзисторы можно заменить на S9014, 9018, 9012 , даже на КТ315 , оптимальный вариант - 2N5551 .


Реле на 7-10 Ампер, подобрать можно любое реле на 12 или 24 Вольта, в моем случае на 12 Вольт.


Блоки защиты для каналов ОМ установлены возле трансформатора второго инвертора, работает все это дело довольно четко, при максимальной громкости защита может сработать (ложно) крайне редко.

МАЛОМОЩНЫЕ УСИЛИТЕЛИ

Долго решал какой усилитель использовать для маломощных акустических систем. Как дешевый вариант вначале решил использовать микросхемы TDA2030 , потом подумал, что 18-ти ватт на канал маловато и перешел к TDA2050 - умощненный аналог на 32 ватта. Затем сравнив звучание основных вариантов выбор впал на любимую микросхему - LM1875 , 24 ватта и качество звучания на 2-3 порядка лучше, чем у первых двух микросхем.


Долго копался в сети, но печатную плату под свои нужды так и не нашел. Сидя за компом несколько часов была создана своя версия для пятиканальноо усилителя на микросхемах LM1875 , плата получилась довольно компактной, на плате также предусмотрен блок выпрямителей и фильтров. Этот блок был полностью собран за 2 часа - все компоненты к тому времени имелись в наличии.


ВИДЕО УСИЛИТЕЛЯ

Качество звучания этих микросхем на очень высоком уровне, в конце концов разряд Hi-Fi , отдаваемая мощность приличная - 24 ватта синуса, но в моем случае мощность повышена путем повышения питающего напряжения до 24-х вольт, в таком случае можно получить порядка 30 ватт выходной мощности. На основной плате усилителя у меня было предусмотрено место для 4-х канального усилителя на TDA2030 , но чем-то оно мне не понравилось...


Плата для LM крепится на основную плату УНЧ через стойки в виде трубок и болтов. Питание для этого блока берется со второго инвертора, предусмотрена отдельная обмотка. Выпрямитель и фильтрующие конденсаторы расположены непосредственно на плате усилителя. В качестве выпрямительных диодов уже традиционные КД213А .

Дросселей для сглаживания ВЧ помех не использовал, да и нет нужды их применять, поскольку даже в довольно брендовых автомобильных усилителях их часто не ставят. В качестве теплоотвода использовал набор дюралюминиевых болванок 200х40х10 мм.


На плату также укреплен кулер, который одновременно отводит теплый воздух с этого блока и отдувает теплоотводы инверторов. С электроникой аудиокомплекса полностью разобрались - переходим к С уважением - АКА КАСЬЯН .

Обсудить статью ДОМАШНИЙ УСИЛИТЕЛЬ - УНЧ И БЛОК ЗАЩИТЫ

Когда-то звуковые усилители (УНЧ) были большими, с кучей ламп, огромными радиаторами для транзисторов, тяжелыми трансформаторами в БП. Но жизнь не стоит на месте. Теперь компактные микросхемы с цифровыми УНЧ заменили ламповых и транзисторных динозавров почти во всех устройствах широкого потребления. Можно без особых усилий сконструировать компактный усилитель, например на чипе PAM8610. Для питания использовался блок питания из обзора.

УНЧ на PAM8610 существует в нескольких вариантах, стоит совсем недорого. Купить можно например тут - . Было решено использовать готовую плату с регулятором громкости и распаянными разъемами. Существует еще ультрабютжетный вариант. Его обозревали тут на сайте - . Почему именно этот усилитель - цена и очень хорошие впечатления от младших моделей PAM8403/PAM8406: , .
Посмотрим, как проявит себя старшая модель усилителя.

Характеристики модуля:
Питание 7-15 В, рекомендуемое 12 В
Мощность до 10 Вт на канал при сопротивлении нагрузки 8 Ом
Защита от КЗ, перегрева
КПД усилителя до 90 %

Судя по описанию, отличные характеристики для такого малыша.

Фото:




Флюс немного не до конца отмыт.

Подключение динамиков никак не обозначено. Опытном путем и по аналогичной немного другой плате выяснено:


Штекер питания - центр "+", вокруг - "-"

Микросхема под радиатором у этого варианта усилителя - это хорошо. Перемычки на плате - одна временно откл звук (mute), вторая не знаю.

Для питания конструкции было решено использовать БП из ссылки в начале обзора. Это БП очень подробно обозревался . Блок питания хорошо работает в предельных режимах, компактный и недорогой. Теоретический можно получить с этим блоком питания суммарную мощность около 12 Ватт на два канала. Или реальных около 5 Ватт на канал. Меня данный блок питания и мощность УНЧ устраивали. Для большего усиления микросхемы при использовании источника сигнала в виде сотового телефона или ЦАП-а необходимо использовать предварительное усиление перед микросхемой, что мне делать не хотелось. Да и мощности в 5 Ватт на канал для моих целей достаточно. Но мы все равно протестируем микросхему УНЧ и БП в разных режимах и на нагрузке разного сопротивления.

Блок питания:


Для тестирования нагрузки используем мощные резисторы 4 Ома, 6 Ом, 8 Ом на 100 Ватт:


Купить их можно тут


Подключаем все модули и резисторы.

Проводим измерения.
Напряжение питания усилителя 12 В, на вход подается сигнал в 1000 Гц от звукового генератора. Мощность рассчитывается квадрат напряжения на выходе одного канала усилителя (измерения вольтметром переменного тока) при подключенной нагрузки делится сопротивление нагрузки

Первая группа тестов
Обычный источник (телефон или ЦАП (DAC)). Uвх=0.15 В. Тестирование проводилось на БП из обзора, без предварительного усиления. Во всех случаях защита от перегрева на микросхеме и по току на БП не срабатывала.


У меня колонки сопротивлением 4 Ома - первая строчка - мой режим использования усилителя.

Вторая группа тестов
Отключение БП из обзора по защите по току. Увеличиваем Uвх до срабатывания защиты на БП. Этот режим возможен при использовании предварительно усилителя (например, ) перед усилителем из обзора

Третья группа тестов
Предельный режим. Используется лабораторный БП. Тесты завершаются, если микросхема усилителя отключается от перегрева (температура микросхемы в этом случае больше 100 градусов Цельсия). В реальности для реализации этого режима необходим более мощный БП (12 В 2 А например) и предварительное усиление сигнала.


Думаю большую мощность, чем заявлена, удалось получить с помощью радиатора на микросхеме УНЧ.

Тесты могут пригодиться, если вы собираетесь использовать эту микросхему УНЧ для своего усилителя или сделаете мощную портативную колонку с предусилителем и мощным аккумулятором.

Температура на радиатор чипа. Радиатор тут - это хорошо. А ведь есть варианты этой платы и без радиатора.

Температура на резисторах:

Если тут при 9 Ваттах такая температура, то что же будет при тестировании 100 ваттного усилка?

Тест на синусоиду. На вход подаем синусоиду 1000 Гц и смотрим осциллографом, что имеем на выходе усилителя.

18+ Читателям с неустойчивой психикой не смотреть

Вход усилителя:


Выход при очень маленькой громкости:


Средний уровень громкости:


Синусоида на максимуме. Чип УНЧ на грани отключения от перегрева.


Я удивился результатам - у младших PAM8403/PAM8406 на выходе с синусоидой все ок. Может перепутал что-то при измерения. Полез в инет и нашел видеообзор подобной микросхемы - . Правда там товаришь не подключал к выходу нагрузку и без предусилка тесты проводил (не вывел микросхему на предельные режимы).


После завершения тестов решил все облагородить. Компоненты для сборки:

Роутер используется как . Прошил аналогично обзору. Так же был сделан переключатель типа тумблер на обычный линейный вход.
Корпус куплен оффлайн за 400 руб - самый дешевый по отношения цена-размер-качество.


Получилось так:




Первоначально был установлен DC-преобразватель 12->5 В на основе ШИМ контроллера. Но пришлось установить второй блок питания на 5 В по двум причинам:
1. Помехи. Убрал земляные петли, но какие-то помехи (возможно от преобразователя) остались.
2. В случае перегруза БП отключается по защите - роутер перегружается и это не хорошо - долго он перегружается.

Итог:






Моя мини Hi-Fi система:


Для моих задач (озвучить ванную и коридор) мощности БП и качества звука от УНЧ вполне хватает.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +35 Добавить в избранное Обзор понравился +25 +59

Казалось бы что может быть проще, подключить усилитель к блоку питания , и можно наслаждаться любимой музыкой?

Однако, если вспомнить, что усилитель по сути модулирует по закону входного сигнала напряжение источника питания, то станет ясно, что к вопросам проектирования и монтажа блока питания стоит подходить очень ответственно.

Иначе ошибки и просчёты допущенные при этом могут испортить (в плане звука) любой, даже самый качественный и дорогой усилитель.

Стабилизатор или фильтр?

Удивительно, но чаще всего для питания усилителей мощности используются простые схемы с трансформатором, выпрямителем и сглаживающим конденсатором. Хотя в большинстве электронных устройств сегодня используются стабилизированные блоки питания. Причина этого заключается в том, что дешевле и проще спроектировать усилитель, который бы имел высокий коэффициент подавления пульсаций по цепям питания, чем сделать относительно мощный стабилизатор. Сегодня уровень подавления пульсаций типового усилителя составляет порядка 60дБ для частоты 100Hz , что практически соответствует параметрам стабилизатора напряжения. Использование в усилительных каскадах источников постоянного тока, дифференциальных каскадов, раздельных фильтров в цепях питания каскадов и других схемотехнических приёмов позволяет достичь и ещё больших значений.

Питание выходных каскадов чаще всего делается нестабилизированным. Благодаря наличию в них 100% отрицательной обратной связи, единичному коэффициенту усиления, наличию ОООС, предотвращается проникновение на выход фона и пульсаций питающего напряжения.

Выходной каскад усилителя по сути является регулятором напряжения (питания), пока не войдет в режим клиппирования (ограничения). Тогда пульсации питающего напряжения (частотой 100 Гц) модулируют выходной сигнал, что звучит просто ужасно:

Если для усилителей с однополярным питанием происходит модуляция только верхней полуволны сигнала, то у усилителей с двухполярным питанием модулируются обе полуволны сигнала. Большинству усилителей свойственен этот эффект при больших сигналах (мощностях), но он никак не отражается в технических характеристиках. В хорошо спроектированном усилителе эффекта клиппирования не должно происходить.

Чтобы проверить свой усилитель (точнее блок питания своего усилителя), вы можете провести эксперимент. Подайте на вход усилителя сигнал частотой чуть выше слышимой вами. В моём случае достаточно 15 кГц:(. Повышайте амплитуду входного сигнала, пока усилитель не войдёт в клиппинг. В этом случае вы услышите в динамиках гул (100Гц). По его уровню можно оценить качество блока питания усилителя.

Предупреждение! Обязательно перед этим экспериментом отключите твиттер вышей акустической системы иначе он может выйти из строя.

Стабилизированный источник питания позволяет избежать этого эффекта и приводит к снижению искажений при длительных перегрузках. Однако, с учётом нестабильности напряжения сети, потери мощности на самом стабилизаторе составляют примерно 20%.

Другой способ ослабить эффект клиппирования это питание каскадов через отдельные RC-фильтры, что тоже несколько снижает мощность.

В серийной технике такое редко применяется, так как помимо снижения мощности, увеличивается ещё и стоимость изделия. Кроме того, применение стабилизатора в усилителях класса АВ может приводить к возбуждению усилителя из-за резонанса петель обратной связи усилителя и стабилизатора.

Потери мощности можно существенно сократить, если использовать современные импульсные блоки питания. Тем не менее, здесь всплывают другие проблемы: низкая надёжность (количество элементов в таком блоке питания существенно больше), высокая стоимость (при единичном и мелко-серийном производстве), высокий уровень ВЧ-помех.

Типовая схема блока питания для усилителя с выходной мощностью 50Вт представлена на рисунке:

Выходное напряжение за счёт сглаживающих конденсаторов больше выходного напряжения трансформатора примерно в 1,4 раза.

Пиковая мощность

Несмотря на указанные недостатки, при питании усилителя от нестабилизированного источника можно получить некоторый бонус — кратковременную (пиковую) мощность выше, чем мощность блока питания, за счёт большой ёмкости фильтрующих конденсаторов. Опыт показывает, что требуется минимум 2000мкФ на каждые 10Вт выходной мощности. За счёт этого эффекта можно сэкономить на трансформаторе питания — можно использовать менее мощный и, соответственно, дешёвый трансформатор. Имейте ввиду, что измерения на стационарном сигнале этого эффекта не выявят, он проявляется только при кратковременных пиках, то есть при прослушивании музыки.

Стабилизированный блок питания такого эффекта не даёт.

Параллельный или последовательный стабилизатор?

Бытует мнение, что параллельные стабилизаторы лучше в аудиоустройствах, так как контур тока замыкается в локальной петле нагрузка-стабилизатор (исключается источник питания), как показано на рисунке:

Тот же эффект дает установка разделительного конденсатора на выходе. Но в этом случае ограничивает нижняя частота усиливаемого сигнала.


Защитные резисторы

Каждому радиолюбителю наверняка знаком запах горелого резистора. Это запах горящего лака, эпоксидной смолы и... денег. Между тем, дешёвый резистор может спасти ваш усилитель!

Автор при первом включении усилителя в цепях питания вместо предохранителей устанавливает низкоомные (47-100 Ом) резисторы, которые в несколько раз дешевле предохранителей. Это не раз спасало дорогие элементы усилителя от ошибок в монтаже, неправильно выставленного тока покоя (регулятор поставили на максимум вместо минимума), перепутанной полярности питания и так далее.

На фото показан усилитель, где монтажник перепутал транзисторы TIP3055 с TIP2955.

Транзисторы в итоге не пострадали. Все закончилось хорошо, но не для резисторов, и комнату проветривать пришлось.

Главное — падение напряжения

При проектировании печатных плат блоков питания и не только не надо забывать, что медь не является сверхпроводником. Особенно это важно для «земляных» (общих) проводников. Если они тонкие и образуют замкнутые контуры или длинные цепи, то в из-за протекающего тока на них получается падение напряжения и потенциал в разных точках оказывается разным.

Для минимизации разности потенциалов принято общий провод (землю) разводить в виде звезды — когда к каждому потребителю идёт свой проводник. Не стоит термин «звезда» понимать буквально. На фото показан пример такой правильной разводки общего провода:


В ламповых усилителях сопротивление анодной нагрузки каскадов довольно высокое, порядка 4кОм и выше, а токи не очень велики, поэтому сопротивление проводников не играет существенной роли. В транзисторных усилителях сопротивления каскадов существенно ниже (нагрузка вообще имеет сопротивление 4Ом), а токи гораздо выше, чем в ламповых усилителях. Поэтому влияние проводников тут может быть весьма существенным.

Сопротивление дорожки на печатной плате в шесть раз выше, чем сопротивление отрезка медного провода такой же длинны. Диаметр взят 0,71мм, это типичный провод, который используется при монтаже ламповых усилителей.

0.036 Ом в отличие от 0.0064 Ом! Учитывая, что токи в выходных каскадах транзисторных усилителей могут в тысячу раз превышать ток в ламповом усилителе, получаем, что падение напряжения на проводниках может быть в 6000! раз больше. Возможно, это одна из причин, почему транзисторные усилители звучат хуже ламповых. Это также объясняет, почему собранные на печатных платах ламповые усилители часто звучат хуже прототипа, собранного навесным монтажом.

Не стоит забывать закон Ома! Для снижения сопротивления печатных проводников можно использовать разные приёмы. Например, покрыть дорожку толстым слоем олова или припаять вдоль дорожки лужёную толстую проволоку. Варианты показаны на фото:

Импульсы заряда

Для предотвращения проникновения фона сети в усилитель нужно принять меры от проникновения импульсов заряда фильтрующих конденсаторов в усилитель. Для этого дорожки от выпрямителя должны идти непосредственно на конденсаторы фильтра. По ним циркулируют мощные импульсы зарядного тока, поэтому ничего другого к ним подключать нельзя. цепи питания усилителя должны подключаться к выводам конденсаторов фильтра.

Правильное подключение (монтаж) блока питания для усилителя с однополярным питанием показан на рисунке:

Увеличение по клику

На рисунке показан вариант печатной платы:

Пульсации

Большинство нестабилизированных источников питания имеют после выпрямителя только один сглаживающий конденсатор (или несколько включенных параллельно). Для улучшения качества питания можно использовать простой трюк: разбить одну ёмкость на две, а между ними включить резистор небольшого номинала 0,2-1 Ом. При этом даже две ёмкости меньшего номинала могут оказаться дешевле одной большой.

Это дает более плавные пульсации выходного напряжения с меньшим уровнем гармоник:


При больших токах падение напряжения на резисторе может стать существенным. Для его ограничения до 0,7В параллельно резистору можно включить мощный диод. В этом случае, правда, на пиках сигнала, когда диод будет открываться, пульсации выходного напряжения опять станут «жесткими».

Продолжение следует...

Статья подготовлена по материалам журнала «Практическая электроника каждый день»

Вольный перевод: Главного редактора «РадиоГазеты»

Для питания мощного усилителя НЧ был разработан этот импульсный блок питания, номинальная мощность которого в нагрузке при напряжении сети 220 В не менее 200 Вт.

Схема выпрямителя сетевого напряжения приведена на первом рисунке в статье, а на втором - схема преобразователя и выпрямителей выходного напряжения. Источник питания не стабилизирован, поскольку выходной каскад УМЗЧ выполнен по двухтактной схеме и не критичен к напряжению питания.

Для ограничения пускового тока в блоке питания предусмотрен режим ступенчатого повышения мощности до номинальной. С этой целью в него введены ограничивающий резистор R2 и тринистор VD6. В начальный момент времени тринистор VD6 закрыт, ток зарядки конденсатора С6 ограничивается резистором R2 и преобразователь запускается при пониженном напряжении. После этого с обмотки IV трансформатора ТЗ на диод VD7 поступает управляющее напряжение, которое открывает тринистор. Он шунтирует резистор R2, и преобразователь выходит на номинальный режим работы. Диод VD5 защищает тринистор VD6. Цепь Rl, C2, ограничивающая скорость нарастания напряжения на аноде тринистора VD6, исключает его самопроизвольное включение. Элементы L1 L2, СЗ, С4 образуют фильтр, который подавляет импульсные помехи, создаваемые генератором блока питания.

Преобразователь представляет собой двухтактный полумостовой автогенератор, запускаемый релаксационным генератором на транзисторах VT1, VT2

Основные параметры преобразователя:

Намоточные данные трансформаторов Т1-ТЗ приведены в таблице. Рекомендуемый порядок намотки обмоток трансформатора ТЗ следующий: обмотка 1, экранирующая, обмотки V - XII, экранирующая, обмотки II, III, IV. Вторичные обмотки V - XII наматывают одновременно в четыре провода. Трансформатор Т4 выполнен на магнитопроводе Ш6Х6 из феррита 2000НМС, каждая из его обмоток содержит по 40 витков провода ПЭВ-2 0,41. Все дроссели типа ДМ. Плата преобразователя помещена в перфорированный кожух. За его пределами, на выходе каждого каналу источника питания 30 В, установлены) электролитические конденсаторы типа К50 -16 емкостью 1000 мкФ.

Трансформатор Магнитопровод Марка и диаметр провода Число витков и номер обмотки
I II III IV V - XII
Т1 К10x6x3
3000НМС
ПЭВ-2 0.56 4 4 9 2 ......
Т2 К10x6x3
2000 НМ-А
ПЭВ-2 0,56 4 2 ..... ...... ......
Т3 ПК30х16
3000НМС
ПЭВ-2 0,9 48 48 6 6 19 (ПЭВ-2 0,56)


Подробное описание и методика налаживания устройства приведены в .