Приближенные вычисления с помощью рядов. Приближенные вычисления с помощью рядов Приближенные вычисления с помощью степенных рядов

Пусть требуется найти с точностью до (с недостатком). Расположим вычисления так:

Мы сначала находим приближенный корень с точностью до 1 только из целого числа 2. Получим 1 (и в остатке 1). Пишем в корне цифру 1 и ставим после нее запятую. Теперь находим цифру десятых. Для этого приписываем к остатку 1 цифры 3 и 5, стоящие направо от запятой, и продолжаем извлечение так, как будто мы извлекали корень из целого числа 235. Полученную цифру 5 пишем в корне на месте десятых. Остальные цифры подкоренного числа (104) нам не нужны. Что полученное число 1,5 будет действительно приближенным корнем с точностью до , видно из следующего; если бы мы находили наибольший целый корень из 235 с точностью до 1, то получили бы 15, значит,

Разделив каждое из этих чисел на 100, получим:

(От прибавления числа 0,00104 двойной знак ≤ должен измениться, очевидно, на знак <, а знак > остается (так как 0,00104 < 0,01).)

Пусть требуется найти с точностью до приближенный с недостатком. Найдем целое число, потом - цифру десятых, затем и цифру сотых. Корень из целого числа будет 15 целых. Чтобы получить цифру десятых, надо, как мы видели, приписать к остатку 23 еще две цифры, стоящие направо от запятой:

В нашем примере этих цифр нет вовсе; ставим на их место нули. Приписав их к остатку и продолжая действие так, как будто находим корень из целого числа 24800, мы найдем цифру десятых 7. Остается найти цифру сотых. Для этого приписываем к остатку 151 еще два нуля и продолжаем извлечение, как будто мы находим корень из целого числа 2480000. Получаем 15,74. Что это число действительно есть приближенный корень из 248 с точностью до с недостатком, видно из следующего. Если бы мы находили наибольший целый квадратный корень из целого числа 2480000, то получили бы 1574, значит,

Разделив каждое из этих чисел на 10000 (1002), получим:

15,74 2 ≤ 248; 15,75 2 > 248.

Значит, 15,74 есть та десятичная дробь, которую мы назвали приближенным корнем с недостатком с точностью до до 248.

Правило . Чтобы извлечь из данного целого числа или из данной десятичной дроби приближенный корень с недостатком с точностью до , до , до и т. д., находят сначала приближенный корень с недостатком с точностью до 1, извлекая корень из целого числа (если его нет, пишут в корне 0 целых).

Потом находят цифру десятых. Для этого к остатку приписывают две цифры покоренного числа, стоящие направо от запятой (если их нет, приписывают к остатку два нуля), и продолжают извлечение так, как это делается при извлечении корня из целого числа. Полученную цифру пишут в корне на месте десятых.

Затем находят цифру сотых. Для этого к остатку приписывают снова две цифры, стоящие направо от тех, которые были только что снесены, и т. д.

Таким образом, при извлечении корня из целого числа с десятичной дробью число надо делить на грани по две цифры в каждой, начиная от запятой, как влево (в целой части числа), так и вправо (в дробной части) .

Примеры.

В последнем примере мы обратили дробь в десятичную, вычислив восемь десятичных знаков, чтобы образовались четыре грани, потребные для нахождения четырех десятичных знаков корня.

Пусть требуется вычислить определенный интеграл $\int\limits_{a}^{b}f(x)dx$ с некоторой наперёд заданной точностью $\varepsilon$. Если непосредственное нахождение первообразной подынтегральной функции $f(x)$ чересчур громоздко, или же интеграл $\int f(x)dx$ вообще не берётся, то в этих случаях можно использовать функциональные ряды. В частности, применяются ряды Маклорена, с помощью которых получают разложение в степенной ряд подынтегральной функции $f(x)$. Именно поэтому в работе нам будет нужен документ с рядами Маклорена .

Степенные ряды, которые мы и станем использовать, сходятся равномерно, поэтому их можно почленно интегрировать по любому отрезку, лежащему внутри интервала сходимости. Схема решения подобных задач на вычисление интегралов с помощью рядов проста:

  1. Разложить подынтегральную функцию в функциональный ряд (обычно в ряд Маклорена).
  2. Произвести почленное интегрирование членов записанного в первом пункте функционального ряда.
  3. Вычислить сумму полученного во втором пункте числового ряда с заданной точностью $\varepsilon$.

Задачи на вычисление интегралов с помощью рядов популярны у составителей типовых расчётов по высшей математике. Поэтому в данной теме мы разберём пять примеров, в каждом из которых требуется вычислить определенный интеграл с точностью $\varepsilon$.

Пример №1

Вычислить $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx$ с точностью до $\varepsilon=10^{-3}$.

Сразу отметим, что интеграл $\int e^{-x^2}dx$ не берётся, т.е. первообразная подынтегральной функции не выражается через конечную комбинацию элементарных функций. Иными словами, стандартными способами (подстановка, интегрирование по частям и т.д.) первообразную функции $e^{-x^2}$ найти не удастся.

Для таких задач есть два варианта оформления, поэтому рассмотрим их отдельно. Условно их можно назвать "развёрнутый" и "сокращённый" варианты.

Развёрнутый вариант оформления

ряд Маклорена :

$$e^x=1+x+\frac{x^2}{2}+\frac{x^3}{6}+\ldots$$

$$e^{-x^2}=1-x^2+\frac{\left(-x^2\right)^2}{2}+\frac{\left(-x^2\right)^3}{6}+\ldots=1-x^2+\frac{x^4}{2}-\frac{x^6}{6}+\ldots$$

Интегрируем полученное разложение на отрезке $\left$:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx=\int\limits_{0}^{\frac{1}{2}}\left(1-x^2+\frac{x^4}{2}-\frac{x^6}{6}+\ldots\right)dx=\\ =\left.\left(x-\frac{x^3}{3}+\frac{x^5}{10}-\frac{x^7}{42}+\ldots\right)\right|_{0}^{1/2}= \frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}-\frac{1}{42\cdot{2^7}}+\ldots$$

Получили сходящийся знакочередующийся ряд. Это значит, что если для вычисления приближенного значения заданного интеграла взять $k$ членов полученного ряда, то погрешность не превысит модуля $(k+1)$-го члена ряда.

Согласно условию, точность $\varepsilon=10^{-3}$. Так как $\frac{1}{42\cdot{2^7}}=\frac{1}{5376}<10^{-3}$, то для достижения требуемой точности достаточно ограничиться первыми тремя членами знакочередующегося ряда:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx\frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}=\frac{443}{960}.$$

Погрешность полученного равенства не превышает $\frac{1}{5376}$.

Однако суммировать обычные дроби - дело утомительное, поэтому чаще всего расчёты ведут в десятичных дробях:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx\frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}\approx{0{,}5}-0{,}0417+0{,}0031\approx{0{,}461}.$$

Разумеется, в этом случае нужно учитывать погрешность округления. Первое слагаемое (т.е. $0{,}5$) было рассчитано точно, поэтому никакой погрешности округления там нет. Второе и третье слагаемые брались с округлением до четвёртого знака после запятой, посему погрешность округления для каждого из них не превысит $0,0001$. Итоговая погрешность округления не превысит $0+0{,}0001+0{,}0001=0{,}0002$.

Следовательно, суммарная погрешность равенства $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx{0{,}461}$ не превысит $0{,}0002+\frac{1}{5376}<10^{-3}$, т.е. значение интеграла вычислено с требуемой точностью.

Сокращённый вариант оформления

Запишем разложение функции $e^x$ в ряд Маклорена :

$$e^x=\sum\limits_{n=0}^{\infty}\frac{x^n}{n!}$$

Данное разложение верно при всех $x\in{R}$. Подставим $-x^2$ вместо $x$:

$$e^{-x^2}=\sum\limits_{n=0}^{\infty}\frac{\left(-x^2\right)^n}{n!}=\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{x}^{2n}}{n!}$$

Интегрируем полученный ряд на отрезке $\left$:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx=\int\limits_{0}^{\frac{1}{2}}\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{x}^{2n}}{n!}dx= \sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!}\int\limits_{0}^{\frac{1}{2}}x^{2n}dx=\\ =\sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!}\left.\frac{x^{2n+1}}{2n+1}\right|_{0}^{1/2}= \sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot\left(\frac{1}{2}\right)^{2n+1}}{n!\cdot(2n+1)}= \sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!\cdot(2n+1)\cdot{2^{2n+1}}}$$

$$\sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!\cdot(2n+1)\cdot{2^{2n+1}}}=\frac{1}{2}-\frac{1}{24}+\frac{1}{320}-\frac{1}{5376}+\ldots$$

Все рассуждения, что были сделаны относительно погрешностей в развёрнутом варианте оформления остаются в силе, т.е. $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx\frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}\approx{0{,}461}$.

Чем сокращённый вариант записи лучше развёрнутого?

Во-первых, нам не нужно угадывать, сколько членов ряда взять в изначальном разложении, чтобы вычислить определенный интеграл с заданной точностью. Например, мы записали в самом начале решения:

$$e^{-x^2}=1-x^2+\frac{x^4}{2}-\frac{x^6}{6}+\ldots$$

Однако почему мы решили, что нужно взять именно четыре члена ряда? А вдруг нужно взять два члена ряда или пять, или сто? Если бы только шестой член ряда оказался меньше чем $\varepsilon$, - что тогда? А тогда пришлось бы возвращаться в самое начало решения, добавлять ещё пару членов ряда и интегрировать их. А если и этого не хватит, то проделать эту процедуру ещё раз.

Сокращённый вид записи таким недостатком не страдает. Мы получаем числовой ряд, записанный в общем виде, поэтому можем брать столько его членов, сколько потребуется.

Исходя из вышеперечисленных причин, я предпочитаю именно сокращённый способ записи. В дальнейнем все решения в этой теме будут оформлены в сокращённой форме.

Ответ : $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx{0{,}461}$.

Пример №2

Вычислить определённый интеграл $\int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx$ с точностью до $\varepsilon=10^{-3}$, разложив подынтегральную функцию в ряд Маклорена и проинтегрировав почленно.

Начнём с разложения подынтегральной функции $\frac{1-\cos\frac{5x}{3}}{x}$ в ряд Маклорена. Запишем разложение функции $\cos{x}$ в ряд Маклорена :

$$\cos{x}=\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{x}^{2n}}{(2n)!}$$

Данное разложение верно при всех $x\in{R}$. Подставим вместо $x$ дробь $\frac{5x}{3}$:

$$\cos{\frac{5x}{3}}=\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{\left(\frac{5x}{3}\right)}^{2n}}{(2n)!}= \sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}.$$

Теперь разложим $1-\cos\frac{5x}{3}$:

$$ 1-\cos\frac{5x}{3}=1-\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}} $$

Забирая из суммы $\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}$ первый член, получим: $\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}=1+\sum\limits_{n=1}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}$. Следовательно:

$$ 1-\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}=1-\left(1+\sum\limits_{n=1}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}\right)=\\ =-\sum\limits_{n=1}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}} =\sum\limits_{n=1}^{\infty}\frac{-(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}=\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}. $$

Последнее, что остаётся - это разделить на $x$:

$$ \frac{1-\cos\frac{5x}{3}}{x}=\frac{1}{x}\cdot\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}= \sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n-1}}{3^{2n}\cdot{(2n)!}}. $$

Интегрируем данное разложение на отрезке $\left$:

$$ \int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx=\int\limits_{0}^{\frac{1}{5}}\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n-1}}{3^{2n}\cdot{(2n)!}}dx= \sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}}{3^{2n}\cdot{(2n)!}}\int\limits_{0}^{\frac{1}{5}}{x}^{2n-1}dx=\\ =\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}}{3^{2n}\cdot{(2n)!}}\cdot\left.\frac{x^{2n}}{2n}\right|_{0}^{1/5}= \sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}}{{2n}\cdot 3^{2n}\cdot{(2n)!}} $$

Получили знакочередующийся ряд. Запишем несколько первых членов этого ряда (до тех пор, пока записанный член не станет меньше $\varepsilon$):

$$\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}}{{2n}\cdot 3^{2n}\cdot{(2n)!}}=\frac{1}{36}-\frac{1}{7776}+\ldots$$

Так как $\frac{1}{7776}<\varepsilon$, то для вычисления интеграла с точностью $\varepsilon$ достаточно первого члена полученного числового ряда:

$$\int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx\approx\frac{1}{36}\approx{0{,}028}.$$

Ответ : $\int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx\approx{0{,}028}$.

Продолжение темы вычисления интегралов с помощью рядов Маклорена продолжим во

Если функция f(x) имеет на некотором интервале, содержащем точку а, производные всех порядков, то к ней может быть применена формула Тейлора:
,
где r n – так называемый остаточный член или остаток ряда, его можно оценить с помощью формулы Лагранжа:
, где число x заключено между х и а.

Правила ввода функций :

Если для некоторого значения х r n →0 при n →∞, то в пределе формула Тейлора превращается для этого значения в сходящийся ряд Тейлора :
,
Таким образом, функция f(x) может быть разложена в ряд Тейлора в рассматриваемой точке х, если:
1) она имеет производные всех порядков;
2) построенный ряд сходится в этой точке.

При а =0 получаем ряд, называемый рядом Маклорена :
,
Разложение простейших (элементарных) функций в ряд Маклорена:
Показательные функции
, R=∞
Тригонометрические функции
, R=∞
, R=∞
, (-π/2 < x < π/2), R=π/2
Функция actgx не разлагается по степеням x, т.к. ctg0=∞
Гиперболические функции


Логарифмические функции
, -1
Биномиальные ряды
.

Пример №1 . Разложить в степенной ряд функцию f(x)= 2 x .
Решение . Найдем значения функции и ее производных при х =0
f(x) = 2 x , f(0) = 2 0 =1;
f"(x) = 2 x ln2, f"(0) = 2 0 ln2= ln2;
f""(x) = 2 x ln 2 2, f""(0) = 2 0 ln 2 2= ln 2 2;

f (n) (x) = 2 x ln n 2, f (n) (0) = 2 0 ln n 2= ln n 2.
Подставляя полученные значения производных в формулу ряда Тейлора, получим:

Радиус сходимости этого ряда равен бесконечности, поэтому данное разложение справедливо для -∞<x <+∞.

Пример №2 . Написать ряд Тейлора по степеням (х +4) для функции f(x)= e x .
Решение . Находим производные функции e x и их значения в точке х =-4.
f(x) = е x , f(-4) = е -4 ;
f"(x) = е x , f"(-4) = е -4 ;
f""(x) = е x , f""(-4) = е -4 ;

f (n) (x) = е x , f (n) ( -4) = е -4 .
Следовательно, искомый ряд Тейлора функции имеет вид:

Данное разложение также справедливо для -∞<x <+∞.

Пример №3 . Разложить функцию f(x) =lnx в ряд по степеням (х- 1),
(т.е. в ряд Тейлора в окрестности точки х =1).
Решение . Находим производные данной функции.
f(x)=lnx , , , ,

f(1)=ln1=0, f"(1)=1, f""(1)=-1, f"""(1)=1*2,..., f (n) =(-1) n-1 (n-1)!
Подставляя эти значения в формулу, получим искомый ряд Тейлора:

С помощью признака Даламбера можно убедиться, что ряд сходится при ½х-1½<1 . Действительно,

Ряд сходится, если ½х- 1½<1, т.е. при 0<x <2. При х =2 получаем знакочередующийся ряд, удовлетворяющий условиям признака Лейбница. При х=0 функция не определена. Таким образом, областью сходимости ряда Тейлора является полуоткрытый промежуток (0;2].

Пример №4 . Разложить в степенной ряд функцию .
Решение . В разложении (1) заменяем х на -х 2 , получаем:
, -∞

Пример №5 . Разложить в ряд Маклорена функцию .
Решение . Имеем
Пользуясь формулой (4), можем записать:

подставляя вместо х в формулу –х, получим:

Отсюда находим: ln(1+x)-ln(1-x) = -
Раскрывая скобки, переставляя члены ряда и делая приведение подобных слагаемых, получим
. Этот ряд сходится в интервале (-1;1), так как он получен из двух рядов, каждый из которых сходится в этом интервале.

Замечание .
Формулами (1)-(5) можно пользоваться и для разложения соответствующих функций в ряд Тейлора, т.е. для разложения функций по целым положительным степеням (х-а ). Для этого над заданной функцией необходимо произвести такие тождественные преобразования, чтобы получить одну из функций (1)-(5), в которой вместо х стоит k(х-а ) m , где k – постоянное число, m – целое положительное число. Часто при этом удобно сделать замену переменной t =х-а и раскладывать полученную функцию относительно t в ряд Маклорена.

Этот метод основан на теореме о единственности разложения функции в степенной ряд. Сущность этой теоремы состоит в том, что в окрестности одной и той же точки не может быть получено два различных степенных ряда, которые бы сходились к одной и той же функции, каким бы способом ее разложение ни производилось.

Пример №5а . Разложить в ряд Маклорена функцию , указать область сходимости.
Решение. Сначала найдем 1-x-6x 2 =(1-3x)(1+2x) , .
на элементарные:

Дробь 3/(1-3x) можно рассматривать как сумму бесконечно убывающей геометрической прогрессии знаменателем 3x, если |3x| < 1. Аналогично, дробь 2/(1+2x) как сумму бесконечно убывающей геометрической прогрессии знаменателем -2x, если |-2x| < 1. В результате получим разложение в степенной ряд

с областью сходимости |x| < 1/3.

Пример №6 . Разложить функцию в ряд Тейлора в окрестности точки х =3.
Решение . Эту задачу можно решить, как и раньше, с помощью определения ряда Тейлора, для чего нужно найти производные функции и их значения при х =3. Однако проще будет воспользоваться имеющимся разложением (5):
=
Полученный ряд сходится при или –3

Пример №7 . Написать ряд Тейлора по степеням (х -1) функции ln(x+2) .
Решение .


Ряд сходится при , или -2 < x < 5.

Пример №8 . Разложить функцию f(x)=sin(πx/4) в ряд Тейлора в окрестности точки x =2.
Решение . Сделаем замену t=х-2:

Воспользовавшись разложением (3), в котором на место х подставим π / 4 t, получим:

Полученный ряд сходится к заданной функции при -∞< π / 4 t<+∞, т.е. при (-∞Таким образом,
, (-∞

Приближенные вычисления с помощью степенных рядов

Степенные ряды широко используются в приближенных вычислениях. С их помощью с заданной точностью можно вычислять значения корней, тригонометрических функций, логарифмов чисел, определенных интегралов. Ряды применяются также при интегрировании дифференциальных уравнений.
Рассмотрим разложение функции в степенной ряд:

Для того, чтобы вычислить приближенное значение функции в заданной точке х , принадлежащей области сходимости указанного ряда, в ее разложении оставляют первые n членов (n – конечное число), а остальные слагаемые отбрасывают:

Для оценки погрешности полученного приближенного значения необходимо оценить отброшенный остаток r n (x) . Для этого применяют следующие приемы:
  • если полученный ряд является знакочередующимся, то используется следующее свойство: для знакочередующегося ряда, удовлетворяющего условиям Лейбница, остаток ряда по абсолютной величине не превосходит первого отброшенного члена .
  • если данный ряд знакопостоянный, то ряд, составленный из отброшенных членов, сравнивают с бесконечно убывающей геометрической прогрессией.
  • в общем случае для оценки остатка ряда Тейлора можно воспользоваться формулой Лагранжа: ax).

Пример №1 . Вычислить ln(3) с точностью до 0,01.
Решение . Воспользуемся разложением , где x=1/2 (см. пример 5 в предыдущей теме):

Проверим, можем ли мы отбросить остаток после первых трех членов разложения, для этого оценим его с помощью суммы бесконечно убывающей геометрической прогрессии:

Таким образом, мы можем отбросить этот остаток и получаем

Пример №2 . Вычислить с точностью до 0,0001.
Решение . Воспользуемся биномиальным рядом. Так как 5 3 является ближайшим к 130 кубом целого числа, то целесообразно число 130 представить в виде 130=5 3 +5.



так как уже четвертый член полученного знакочередующегося ряда, удовлетворяющего признаку Лейбница, меньше требуемой точности:
, поэтому его и следующие за ним члены можно отбросить.
Многие практически нужные определенные или несобственные интегралы не могут быть вычислены с помощью формулы Ньютона-Лейбница, ибо ее применение связано с нахождением первообразной, часто не имеющей выражения в элементарных функциях. Бывает также, что нахождение первообразной возможно, но излишне трудоемко. Однако если подынтегральная функция раскладывается в степенной ряд, а пределы интегрирования принадлежат интервалу сходимости этого ряда, то возможно приближенное вычисление интеграла с наперед заданной точностью.

Пример №3 . Вычислить интеграл ∫ 0 1 4 sin (x) x с точностью до 10 -5 .
Решение . Соответствующий неопределенный интеграл не может быть выражен в элементарных функциях, т.е. представляет собой «неберущийся интеграл». Применить формулу Ньютона-Лейбница здесь нельзя. Вычислим интеграл приближенно.
Разделив почленно ряд для sinx на x , получим:

Интегрируя этот ряд почленно (это возможно, так как пределы интегрирования принадлежат интервалу сходимости данного ряда), получаем:

Так как полученный ряд удовлетворяет условиям Лейбница и достаточно взять сумму первых двух членов, чтобы получить искомое значение с заданной точностью.
Таким образом, находим
.

Пример №4 . Вычислить интеграл ∫ 0 1 4 e x 2 с точностью до 0,001.
Решение .
. Проверим, можем ли мы отбросить остаток после второго члена полученного ряда.
≈0.0001<0.001. Следовательно, .

И в 7-м и в 8-м классе мы часто решали уравнения графически. Заметили ли вы, что практически во всех таких примерах уравнения имели «хорошие» корни? Это были целые числа, которые без труда отыскивались с помощью графиков, особенно на клетчатой бумаге. Но так бывает далеко не всегда, просто мы до сих пор подбирали «хорошие» примеры.

Рассмотрим два уравнения: = 2 - х и = 4 - х. Первое уравнение имеет единственный корень х = 1, поскольку графики функций у = и у = 2 - х пересекаются в одной точке А (1; 1) (рис. 112). Во втором случае графики функций — фс и у = 4 - х также пересекаются в одной точке В (рис. 113), но с «плохими» координатами. Пользуясь чертежом, можно сделать вывод, что абсцисса точки В примерно равна 2,5. В подобных случаях говорят не о точном, а о приближенном решении уравнения и пишут так:


Это одна из причин, по которым математики решили ввести понятие приближенного значения действительного числа. Есть и вторая причина, причем, может быть, даже более важная.Что такое действительное число? Это бесконечная десятичная дробь. Но производить вычисления с бесконечными десятичными дробями неудобно, поэтому на практике пользуются приближенными значениями действительных чисел. Например, для числа пользуются приближенным равенством 3,141 или 3,142. Первое называют приближенным значением (или приближением) числа п по недостатку с точностью до 0,001; второе называют приближенным значением (приближением) числа к по избытку с точностью до 0,001. Можно взять более точные приближения: например,
3,1415 — приближение по недостатку с точностью до 0,0001; 3,1416 — приближение по избытку с точностью до 0,0001. Можно взять менее точные приближения, скажем, с точностью до 0,01: по недостатку 3,14, по избытку 3,15.
Знак приближенного равенства » вы использовали и в курсе математики 5—6-го классов и, вероятно, в курсе физики, да и мы пользовались им раньше, например в § 27.

Пример 1. Найти приближенные значения по недостатку и по избытку с точностью до 0,01 для чисел:

Решение,

а) Мы знаем, что = 2,236... (см. § 27), следовательно, 2,23 — это приближение по недостатку с точностью до 0,01; 2,24 — это приближение по избытку с точностью до 0,01.
б) 2 + = 2,000... + 2,236... = 4,236... . Значит, 2 + 4,23 — это приближение по недостатку с точностью до 0,01; 2 + 4,24 — это приближение по избытку с точностью до 0,01.
в) Имеем 0,31818... (см. § 26). Таким образом, 0,31 — это приближение по недостатку с точностью до 0,01; 0,32 — это приближение по избытку с точностью до 0,01.
Приближение по недостатку и приближение по избытку называют иногда округлением числа.

Определение. Погрешностью приближения (абсолютной погрешностью) называют модуль разности между точным значением величины х и ее приближенным значением а: погрешность приближения — это | х - а |.
Например, погрешность приближенного равенства выражается как или соответственно как ,
Возникает чисто практический вопрос: какое приближение лучше, по недостатку или по избытку, т. е. в каком случае погрешность меньше? Это, конечно, зависит от конкретного числа, для которого составляются приближения. Обычно при округлении положительных чисел пользуются следующим пра-
вилом:

Применим это правило ко всем рассмотренным в этом параграфе числам; выберем для рассмотренных чисел те приближения, для которых погрешность окажется наименьшей.
1) = 3,141592... . С точностью до 0,001 имеем 3,142; здесь первая отбрасываемая цифра равна 5 (на четвертом месте после запятой), поэтому взяли приближение по избытку.
С точностью до 0,0001 имеем 3,1416 — и здесь взяли приближение по избытку, поскольку первая отбрасываемая цифра (на пятом месте после запятой) равна 9. А вот с точностью до 0,01 надо взять приближение по недостатку: 3,14.
2) = 2,236... . С точностью до 0,01 имеем 2,24
(приближение по избытку). ¦
3) 2 + = 4,236... . С точностью до 0,01 имеем 2 + 4,24 (приближение по избытку).
4) = 0,31818... . С точностью до 0,001 имеем 0,318 (приближение по недостатку).
Рассмотрим последний пример подробнее. Возьмем укрупненный фрагмент координатной прямой (рис. 114).

Точка принадлежит отрезку , значит, ее расстояния от концов отрезка не превосходят длины отрезка. Расстояния точки от концов
отрезка равны соответственно отрезка равна 0,001. Значит, и
Итак, в обоих случаях (и для приближения числа по недостатку, и для приближения его по избытку) погрешность не превосходит 0,001.
До сих пор мы говорили: приближения с точностью до 0,01, до 0,001 и т. д. Теперь мы можем навести порядок в использовании терминологии.
Если а — приближенное значение числа х и , mo говорят, что погрешность приближения не превосходит h или что число х равно числу а с

точностью до h.

Почему же важно уметь находить приближенные значения чисел? Дело в том, что практически невозможно оперировать с бесконечными десятичными дробями и использовать их для измерения величин. На практике во многих случаях вместо точных значений берут приближения с заранее заданной точностью (погрешностью). Эта идея заложена и в калькуляторах, на дисплеях которых высвечивается конечная десятичная дробь, т. е. приближение выводимого на экран числа (за редким исключением, когда выводимое число представляет собой конечную десятичную дробь, умещающуюся на экране).

1. 2. 3.
4. 5. 6.
7. 8. 9.
10. 11. 12.
13. 14. 15.
16. 17. 18.
19. 20. 21.
22. 23. 24.
25. 26. 27.
28. 29. 30.

Задание 6.12.

Разложить в ряд Фурье периодическую с периодом функцию f(x), заданную на промежутке .

1. f(x)= . 2. f(x)=
3. f(x)= 4. f(x)=
5. f(x)= 6. f(x)=
7. f(x)= 8. f(x)=
9. f(x)= 10. f(x)=
11. f(x)= 12. f(x)=
13. f(x)= 14. f(x)=
15. f(x)= 16. f(x)=
17. f(x)= 18. f(x)=
19. f(x)= 20. f(x)=
21. f(x)= 22. f(x)=
23. f(x)= 24. f(x)=
25. f(x)= 26. f(x)=
27. f(x)= 28. f(x)=
29. f(x)= 30. f(x)=

Задание 6.13.

Разложить в ряд Фурье функцию f (x), заданную на интервале (0; π), продолжив (доопределив) ее чётным и нечетным образом. Построить графики для каждого продолжения.

1. f (x) = e x 2. f (x)= x 2 3. f (x)= x 2
4. f (x) = ch x 5. f (x) = e – x 6. f (x) = (x – 1) 2
7. f(x) = 3 – x / 2 8. f (x) = sh 2x 9. f (x) = e 2 x
10. f (x) = (x – 2) 2 11. f (x)= 4 x / 3 12. f (x) = ch x /2
13. f (x)= e 4 x 14. f (x) = (x + 1) 2 15. f (x) = 5 – x
16. f (x) = sh 3 x 17. f (x) = e – x / 4 18. f (x) =(2 x – 1) 2
19. f (x) = 6 x / 4 20. f (x) = ch 4 x 21. f (x) = e – 3 x
22. f (x) = x 2 + 1 23. f (x) = 7 – x / 7 24. f (x) = sh x /5
25. f (x) = e – 2 x / 3 26. f (x) = (x – π) 2 27. f (x) = 10 – x
28. f (x) = ch x / π 29. f (x) = e 4 x / 3 30. f (x) = (x – 5) 2

Задание 6.14.



Разложить в ряд Фурье в указанном интервале периодическую функцию f (x) с периодом .

1. 2.
3. 4.
5. 6.
7. 8.
9.

Задание 6.15.

Воспользовавшись разложением функции f(x) в ряд Фурье в указанном интервале, найти сумму данного числового ряда.

1.
2.
3.
4.
5.
6.
7.
8.
9.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

Контрольная работа № 7.

"Теория вероятностей"

Задание 7.1.

1. Каждая из двух команд по 5 спортсменов проводит жеребьевку для присвоения номеров. Два брата входят в состав разных команд. Найти вероятность того, что братья получат: а) номер 4; б) одинаковый номер.

2. Прибор содержит два одинаковых независимо функционирующих блока с вероятностями безотказной работы 0,8. Найти вероятность того, что безотказно будет работать: а) только один блок; б) хотя бы один блок.

3. База отправила товар в два магазина. Вероятность своевременной доставки в каждый из них равна 0,8. Найти вероятность того, что своевременно получит товар: а) только один магазин; б) хотя бы один магазин.

4. Рейсовый катер может опоздать вследствие двух независимых причин: плохой погоды и неисправности оборудования. Вероятность плохой погоды равна 0,3, вероятность неисправности 0,4. Найти вероятность того, что катер опоздает: а) только по причине плохой погоды; б) по любым причинам.

5. Условия дуэли предусматривают по 2 выстрела каждого из дуэлянтов по очереди до первого попадания. Вероятности их попадания при одном выстреле равны 0,2 и 0,3 соответственно. Найти вероятность того, что первый дуэлянт: а) поразит соперника вторым выстрелом; б) поразит соперника.

6. Вероятность забить гол нападающим при одном ударе по воротам равна 0,3. Найти вероятность того, что после двух ударов будет забит: а) только один гол; б) хотя бы один гол.

7. Вероятность своевременного обнаружения крылатой ракеты радиолокационной станцией (РЛС) равна 0,8. На дежурстве находятся две РЛС. Найти вероятность того, что ракета будет обнаружена: а) только одной РЛС; б) хотя бы одной РЛС.

8. Автомобильный номер содержит четыре цифры. Найти вероятность того, что у встречного автомобиля сумма цифр номера: а) равна двум; б) не более двух.

9. Найти вероятность того, что наугад названное двузначное число: а) делится на 3; б) имеет сумму цифр, равную 1.

10. В ящике пять белых и два красных шара. Найти вероятность того, что наугад извлеченные два шара будут: а) одного цвета; б) белые.

11. Двое независимо друг от друга садятся в электропоезд из восьми вагонов. Найти вероятность их встречи.

12. Ракета несет две разделяющиеся боеголовки, поражающие цель независимо друг от друга с вероятностями 0,8 и 0,7. Найти вероятность того, что цель будет поражена: а) только одной боеголовкой; б) хотя бы одной боеголовкой.

13. В ящике пять белых и три черных шара. Найти вероятность того, что наугад извлеченные два шара будут: а) разных цветов; б) черные.

14. Найти вероятность того, что двое встречных прохожих родились: а) в один месяц; б) летом.

15. Найти вероятность того, что сумма цифр наугад выбранного двузначного числа: а) равна пяти; б) меньше пяти.

16. Найти вероятность того, что произведение цифр наугад выбранного двузначного числа: а) равно трем; б) меньше трех.

17. Вероятности поймать рыбу при поклевке у рыболовов равны 0,2 и 0,3 соответственно. У каждого произошла одна поклевка. Найти вероятность того, что их общий улов составит: а) одну рыбу; б) не менее одной рыбы.

18. Телефонный номер содержит 6 цифр. Найти вероятность того, что сумма цифр наугад выбранного номера: а) равна 2; б) меньше 2.

19. Найти вероятность того, что при восьми случайных нажатиях на клавиши пишущей машинки будет напечатано слово "отлично". Клавиатура содержит 40 клавишей.

20. Два шахматиста играют между собой матч из двух партий. Вероятность выигрыша в каждой партии первым из них равна 0,6. Какова вероятность, что он выигрывает: а) только одну партию; 2) хотя бы одну партию.

21. Два стрелка произвели по одному выстрелу по мишени с вероятностью p 1 = 0,6, p 2 = 0,7. Найти вероятность: а) только одного попадания; б) хотя бы одного попадания.

22. Вероятности преодолеть планку для двух прыгунов равны p 1 = 0,8, p 2 = 0,7 соответственно. Найти вероятность того, что: а) только один из них возьмет высоту; б) хотя бы один из них возьмет высоту.

23. Автомобильный номер состоит из четырех цифр. Найти вероятность того, что номер встречного автомобиля содержит: а) три пятёрки подряд; б) три пятёрки.

24. К месту пожара направлены две команды, которые могут успеть к тушению своевременно с вероятностями p 1 = 0,9, p 2 = 0,8. Какова вероятность потушить пожар, если для этого: а) достаточно одной команды; б) необходимы обе команды.

25. Два самолета выпускают в цель по одной ракете с вероятностями попадания p 1 =0,8, p 2 =0,9. Найти вероятность поражения цели: а) двумя ракетами; б) только одной ракетой.

26. Прибор состоит из трех независимо друг от друга функционирующих блоков А, В, С с вероятностями безотказной работы Р(А)=0,9, Р(В)=0,8, Р(С)=0,7. Найти вероятность безотказной работы прибора, если для этого необходимо функционирование блока А и хотя бы одного из блоков В, С.

27. Вероятности выполнения месячного плана двумя цехами предприятия равны p 1 =0,9, p 2 =0,7. Полагая, что цеха работают независимо друг от друга, найти вероятности того, что: а) только один цех выполнит план; б) хотя бы один цех выполнит план.

28. Участок электрической цепи состоит из последовательно соединенных элементов А, В с вероятностями выхода из строя р 1 = 0,1, р 2 = 0,2. Элемент В дублируется с помощью параллельно включенного ему элемента С (р 3 = 0,2). Найти вероятность безотказной работы участка: а) при отсутствии элемента С; б) при его наличии.

29. Два орудия выпускают в цель по одному снаряду с вероятностями попадания p 1 = 0,6, p 2 = 0,7. Найти вероятность того, что в цель попадет: а) только один снаряд; б) хотя бы один снаряд.

30. Болезни А, В имеют одинаковые симптомы, обнаруженные у больного. Вероятности заболеваний равны Р(А) = 0,3, Р(В) = 0,5. Считая, что человек может приобрести болезни независимо одну от другой найти вероятность того, что больной болен: а) только одной из болезней; б) хотя бы одной болезнью.

Задание 7.2.

1. 70% однотипных утюгов, поступающих в продажу изготовлено на предприятии А, 30% - на предприятии В. Доля брака на предприятии А - 5%, на предприятии В - 2%. а) Найти вероятность покупки бракованного утюга; б) купленный утюг оказался бракованным. Какова вероятность того, что он изготовлен на предприятии А?

2. В урне 2 белых и 3 черных шара. Наугад извлекается один из них и откладывается в сторону. Затем извлекается второй шар. а) Найти вероятность того, что он белый; б) извлеченный второй шар - белый. Какова вероятность, что первый шар был черным?

3. Прибор комплектуется узлом, изготавливаемым заводами 1 (поставляет 60% узлов), 2 (поставляет 40% узлов). Доля брака на заводе 1 - 0,05, на заводе 2 - 0,07. а) Найти вероятность того, что прибор - бракованный; б) прибор оказался бракованным. Найти вероятность, что виновник - завод 1.

4. При сборке подшипников используются шарики, 30% которых поставляет цех 1 и 70% - цех 2. Доли брака в цехах составляют 0,1 и 0,05 соответственно. а) Найти вероятность брака подшипника; б) подшипник оказался бракованным. Найти вероятность того, что виновником является цех 1.

5. В двух урнах лежат по 2 белых и 3 черных шара. Из первой во вторую наугад перекладывается шар, затем из второй извлекается шар. а) Найти вероятность того, что он - белый; б) извлеченный шар - белый. Какова вероятность, что перекладывался черный шар?

6. Два цеха выпускают по 50% однотипных телевизоров, поступающих в продажу. Цех 1 выпускает 5% бракованных телевизоров, цех 2 - 7%. а) Найти вероятность приобрести бракованный телевизор; б) найти вероятность того, что купленный телевизор выпущен цехом 1, если он оказался с браком.

7. Всхожесть (вероятность всхода) семян, полученных на селекционной станции 1 равна 0,9, на станции 2 - 0,8. В продажу поступает равное количество семян от обеих станций. а) Найти всхожесть приобретенных семян; б) Наугад выбранное семя при посеве не взошло. Какова вероятность его выращивания на станции 1?

8. Два цеха поставляют одинаковое количество болтов на сборку. Доля брака в первом цехе - 0,1, во втором - 0,2. а) Найти вероятность того, что наугад взятый на сборку болт - бракованный; б) болт оказался бракованным. Какова вероятность, что он изготовлен цехом 2?

9. Скрытый период болезни может быть длительным в 30% случаев заболевания и коротким - в 70% случаев. Вероятности выздоровления равны 0,9 для длительного и 0,6 - для краткого периодов. а) Найти вероятность выздоровления наугад выбранного больного; б) найти вероятность того, что скрытый период был длительным, если больной выздоровел.

10. По статистическим данным среди заболевающих в течение года телят 20% заболевают в теплое время и 80%- в холодное время года. Вероятность выздоровления теленка, заболевшего в теплое время года - 0,9, в холодное - 0,8. а) Найти вероятность выздоровления наугад отобранного больного; б) найти вероятность того, что теленок заболел в теплое время, если он выздоровел.

11. Блок комплектуется резистором с одного из трех заводов, осуществляющих 60%, 30% и 20% поставок. Доля брака среди резисторов составляет 0,3 на заводе 1, 0,2 - на заводе 2, 0,1- на заводе 3. А) Найти вероятность брака выпущенного блока; б) найти вероятность того, что бракованный блок укомплектован резистором завода 1.

12. В кризисной стадии болезнь может перейти с равной вероятностью в скоротечную (С) и вялотекущую (В) формы. Вероятности выздоровления равны 0,95 для формы С и 0,8 - для формы В. а) Найти вероятность выздоровления случайно выбранного больного; б) найти вероятность того, что болезнь перешла в форму С, если больной выздоровел.

13. При заболевании данной болезнью одинаково часто обнаруживаются формы А и Б, определяющие ее дальнейшее течение. В случае А больной выздоравливает в течение месяца с вероятностью 0,8, в случае Б - с вероятностью 0,6. а) Найти вероятность выздоровления за месяц случайно отобранного больного; б) найти вероятность протекании болезни в форме А, если больной выздоровел в течении месяца.

14. Вероятность выполнением плана траулером при своевременном приходе танкера-заправщика равна 0,8, при несвоевременном - 0,4. Танкер прибывает своевременно в 90% случаев. а) Найти вероятность выполнения плана траулером; б) вычислить вероятность своевременной заправки, если известно, что траулер выполнил план.

15. Лето может оказаться засушливым в 20% случаев, чрезмерно влажным в 30% случаев и нормальным в остальных случаях. Вероятности вызревания урожая составляют 0,7, 0,6 и 0,9 соответственно. а) Найти вероятность вызревания урожая в случайно выбранный год; б) найти вероятность того, что лето было засушливым, если урожай вызрел.

16. В данной местности встречаются лишь болезни А и Б, симптомы которых внешне неотличимы. Среди больных А встречается в 30% случаев, Б - в 70%. Вероятности выздоровления при заболеваниях равны 0,6 и 0,3 соответственно. а)найти вероятность того, что случайно взятый больной выздоровеет; б) с какой вероятностью выздоровевший болел болезнью А?

17. Объект может быть сдан в эксплуатацию в срок при плановой поставке оборудования с вероятностью 0,9, при поставке с задержкой - с вероятностью 0,6. Плановые поставки в среднем наблюдались в 80% заказов, поставки с задержкой - в 20%. а) Какова вероятность сдачи объекта в срок? б) найти вероятность своевременной поставки, если известно, что объект сдан в срок.

18. Ядерная реакция может порождать частицы типа А в 70% случаев и типа Б - в 30% случаев. Частицы А регистрируются прибором с вероятностью 0,8, частицы Б - с вероятностью 1. а) Найти вероятность регистрации частицы в предстоящем опыте; б) Прибор отметил появление частицы. С какой вероятностью она принадлежала к типу Б?

19. Среди родившихся в первом полугодии детей средний вес превышают 60% новорожденных, во втором полугодии - 30%. Считая, что рождаемость в обоих полугодиях одинакова, найти: а) вероятность превышения веса случайно выбранным ребенком; б) вероятность рождения ребёнка в первом полугодии, если он - повышенного веса.

20. Испускаемый катодом электрон может оказаться "быстрым" с вероятностью 0,7 и "медленным" - с вероятностью 0,3. Вероятность попадания в мишень "быстрых" электронов равна 0,9, "медленных" - 0,4. Найти вероятность того, что: а) электрон попадет в мишень; б) электрон был "медленным", если он достиг мишени.

21. Лисица преследуя серого зайца нагоняет его в 30% случаев, белого зайца - в 20% случаев. Оба вида зайцев встречаются в лесу с одинаковой частотой. а) Какова вероятность, что лисица догонит случайно встреченного зайца; б) найти вероятность того, что настигнутый заяц был серым.

22. Вероятность опоздания самолёта при неблагоприятных условиях (непогода, технические причины) равна 0,6 и при благоприятных условиях - 0,1. Неблагоприятные условия наблюдались в 20 % рейсов, благоприятные - в 80 %. Найти вероятность того, что: а) в следующем рейсе самолёт опоздает; б) опоздание сопровождалось неблагоприятными условиями.

23. Однотипные изделия поступают в продажу с заводов 1 и 2, поставляющих 60% и 40% изделий. Доля брака на заводе 1 равна 0,05, на заводе 2 - 0,07. Найти вероятность того, что: а) приобретенное изделие окажется бракованным; б) бракованное изделие выпущено заводом 2.

24. Две партии содержат одинаковое количество однотипных деталей и имеют доли брака (вероятности брака детали) равные 0,1 и 0,2 соответственно. Наугад выбирается одна из партий, из которой извлекается деталь. а) Найти вероятность того, что она бракованная; б) Найти вероятность того, что оказавшаяся бракованной деталь принадлежала первой партии.

25. .Вероятности поражения цели бомбардировщиком при ясной погоде равна 0,9, при непогоде - 0,7. Ясная погода 1 июня наблюдалась в 60% случаев, непогода - в 40%. Найти вероятность того, что 1 июня: а) цель будет поражена; б) погода была ясная, если известно, что цель поражена.

26. Два шахматиста А и Б играют одну партию. Вероятность выигрыша А при наличии у него белых фигур равна 0,7, при наличии чёрных фигур - 0,4. Цвет фигур определяется перед партией с помощью жеребьёвки. Найти вероятность того, что: а) шахматист А выиграет; б) А играл чёрными фигурами, если известно, что он выиграл.

27. Вероятность своевременного прибытия судна при безотказной работе двигателя равна 0,8 и при его поломке - 0,1. Двигатель ранее работал безотказно в 90% рейсов судна. Найти вероятность того, что: а) в следующем рейсе судно не опоздает; б) поломки двигателя, если известно, что судно опоздало.

28. Прибор может эксплуатироваться в 30% случаев в тяжелых условиях, где он выходит из строя с вероятностью 0,3 и в 70% случаев - в благоприятных условиях, где он отказывает с вероятностью 0,1. Найти вероятность того, что: а) прибор откажет; б) отказавший прибор эксплуатировался в неблагоприятных условиях.

29. Из урны, содержащей 3 белых и 2 черных шара, по очереди извлекаются 2 шара. Цвет первого из них неизвестен. Найти вероятность того, что: а) второй шар будет белым; б) первый шар был черным, если второй оказался белым.

30. Два цеха поставляют на сборку изделия однотипные узлы. Первый из них поставляет 60% всех узлов, второй - 40%. Вероятность узла оказаться бракованным равна 0,2 для цеха 1 и 0,3 - для цеха 2. Найти вероятность того, что: а) случайно выбранный узел окажется бракованным; б) бракованный узел поступил из цеха 1.

Задание 7.3.

Построить ряд распределения, функцию распределения и ее график, найти математическое ожидание и дисперсию случайной величины X - числа наступлений случайного события А в указанной ниже серии независимых испытаний .

1. Монета подбрасывается 4 раза. А - выпадение герба при одном бросании, Р(А)=0,5.

2. Стрелок стреляет по мишени 3 раза. А - попадание при одном выстреле, Р(А)=0,6.

3. Рыболов трижды забрасывает удочку. А - поклевка при одном забрасывании, Р(А)=0,3.

4. Из урны, содержащей 2 белых и 3 черных шара, извлекается наугад шар (если он белый, то наступило А), который затем возвращается в урну. Опыт повторяется 3 раза.

5. Высеиваются 3 семечка тыквы. Всхожесть (вероятность всхода А одного семени) равна Р(А)=0,8.

6. Элементарная частица может быть зарегистрирована прибором (событие А) с вероятностью Р(А)=0,7. Перед прибором поочередно пролетают три частицы.

7. А -событие, наступающее, когда первая цифра номера встречного автомобиля - нуль. Мимо поочередно проезжают два автомобиля.

8. А - выход из строя электрооборудования автомобиля в течение года, Р(А)=0,3. Рассматриваются три автомобиля.

9. А - событие, состоящее в побитии мирового рекорда спортсменом, Р(А)=0,2. В соревновании участвуют три спортсмена.

10. Орудие выпускает по цели три снаряда. А - попадание снаряда, Р(А)=0,8.

11. Извлеченная наугад с книжной полки книга может оказаться учебником (событие А) с вероятностью Р(А)=0,4. Извлекается три книги.

12. Позитрон при рождении может приобрести правую (событие А) или левую ориентацию вращения, Р(А)=0,6. Рассматриваются 3 позитрона.

13. Наличие синей глины указывает на возможность алмазного месторождения (событие А) с вероятностью Р(А)=0,4. Синяя глина обнаружена в трех районах.

14. В период цветения растение может быть опылено (событие А) с вероятностью Р(А)=0,8. Рассматриваются 4 растения.

15. Рыболов может поймать рыбу при поклевке (событие А) с вероятностью Р(А)=0,4. У рыболова было три поклевки.

16. В ядерной реакции может образоваться резонансная частица (событие А) с вероятностью Р(А)=0,2. Рассматриваются три реакции.

17. Помещенный в грунт саженец может приняться (событие А) с вероятностью Р(А)=0,7. Высажено три саженца.

18. Генератор электростанции в течение года может выйти из строя (событие А) с вероятностью Р(А)=0,2. Рассматривается трехлетний период эксплуатации генератора.

19. В течение суток молоко в горшке может прокиснуть (событие А) с вероятностью Р(А)=0,4. Рассматривается случай трех горшков.

20. На фотографии, полученной в камере Вильсона частица регистрируется в опыте (событие А) с вероятностью Р(А)=0,5. Проведено 4 опыта.

21. А - появление четного числа очков при бросании игральной кости. Кость выбрасывается 4 раза.

22. Три орудия стреляют по своим целям, А - попадание снаряда в цель, Р(А)=0,7.

23. Рыболов при поклевке может вытащить рыбу (событие А) с вероятностью Р(А)=0,6. Поклевка произошла у 4 рыболовов.

24. Биение ротора электродвигателя приводит к его выходу из строя в вероятностью Р(А)=0,8. Рассматриваются три однотипных двигателя.

25. При изготовлении детали она может оказаться бракованной (событие А) с вероятностью Р(А)=0,2. Изготовлено три детали.

26. Станок работает безотказно в течение года (событие А) с вероятностью Р(А)=0,8. В цехе работают 4 станка.

27. А - появление нечетного числа очков при бросании игральной кости. Кость выбрасывается 4 раза.

28. Поезд может прибыть по расписанию (событие А) с вероятностью Р(А)=0,9. Рассматриваются три рейса.

29. В среднем при наборе страницы текста оператор совершает ошибку (событие А) в 30% случаев. Статья содержит 4 страницы текста.

30. Самолет-разведчик может обнаружить цель (событие А) с вероятностью Р(А)=0,8. Для обнаружения цели послано три самолета.

Задание 7.4.

По заданной функции распределения F(x) случайной величины СВ X найти плотность распределения и построить ее график. Вычислить вероятность P(a ≤X≤b ) попадания значения СВ в заданный интервал, математическое ожидание и дисперсию.

1.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Задание 7.5.

Найти вероятность попадания в заданный интервал [a,b ] значения нормально распределенной случайной величины X , если известно её математическое ожидание M [X ] и дисперсия D [X ].

Вар. M [X ] D [X ] b
-2
-1
-1
-8 -9
-2
-1